First measurement of the ${}^{7}\text{Li}(\gamma, t){}^{4}\text{He cross section using}$ mono-energetic γ -ray beams

Catalin Matei,¹ D.L. Balabanski,¹ S. Chesnevskaya,¹ G.L. Guardo,¹ D. Lattuada,¹ Y. Xu,¹

M. Munch,² S.D. Pain,³ K.A. Chipps,³ H.J. Karwowski,⁴ C.Aa. Diget,⁵ J. Frost-Schenk,⁵

M. La Cognata,⁶ R.G. Pizzone,⁶ G.G. Rapisarda,⁶ C.R. Brune,⁷ and K.Y. Chae⁸

¹ELI-NP / IFIN-HH, Romania
²Aarhus University, Denmark
³Oak Ridge National Laboratory, USA
⁴University of North Carolina - Chapel HillL, USA
⁵University of York, UK
⁶INFN-Laboratori Nazionali del Sud, Italy
⁷Ohio University, USA
⁸Sungkyunkwan University, Korea

The ⁷Li(γ , t)⁴He cross section was measured for the first time using mono-energetic γ -rays with energies between 4.4 and 10 MeV at the High Intensity Gamma-ray Source (HI γ S) in USA. The reaction is important for the primordial Li-problem and for testing our understanding of the mirror alpha-capture reactions ³H(α , γ)⁷Li and ³He(α , γ)⁷Be. Most measurements over the last 30 years of the ³H(α , γ)⁷Li reaction have explored the energy range below E_{cm} = 1.2 MeV but measurements at higher energies could restrict the extrapolation to astrophysically important energies.

The experimental arrangement for measuring the ${}^{7}\text{Li}(\gamma, t){}^{4}\text{He}$ reaction at HI γ S included a large-area annular silicon detector array (SIDAR) and several beam characterization instruments. The SIDAR was arranged in a lampshade configuration with twelve YY1 silicon detectors of 300, 500, and 1000 μ m thickness. The results are in disagreement with the previous experimental measurements in the same energy range but the extrapolated S-factor agrees with the adopted value. Details of the experiment at HI γ S will be presented together with perspectives for future measurements.