The ⁷Be $(\alpha, \gamma)^{11}$ C with DRAGON for νp -process nucleosynthesis

A. Psaltis,¹ A. A. Chen,¹ D. S. Connolly,² B. Davids,² G. Gilardy,^{3,4} R. Giri,⁵ U. Greife,⁶ W. Huang,^{2,7} D. A. Hutcheon,² J. Karpesky,⁶ A. Lennarz,² J. Liang,¹ M. Lovely,⁶ S. N. Paneru,⁵ C. Ruiz,² G. Tenkila,⁸ and M. Williams²

 ¹McMaster University ²TRIUMF
³Joint Insitute for Nuclear Astrophysics, University of Notre Dame ⁴Université de Bordeaux ⁵Ohio University ⁶Colorado School of Mines ⁷University of Northern British Columbia ⁸University of British Columbia

The production of the p-nuclei is one of the unsolved puzzles in nuclear astrophysics. A possible mechanism is the nucleosynthesis in the neutrino-driven winds of core-collapse supernovae (νp -process), but it carries uncertainties, mostly in the supernova dynamics and the nuclear physics input [1, 2]. The *pp*-chain breakout reaction ⁷Be(α, γ)¹¹C, which occurs prior the supernova explosion, was identified as an important link which can influence the nuclear flow of the νp -process [2]. Nevertheless, its reaction rate is poorly known over the relevant energy range (T= 1.5-3 GK). To improve the ⁷Be(α, γ)¹¹C rate for νp -process nucleosynthesis temperatures, the first direct measurement of resonances with unknown strength was recently performed at TRIUMF. A radioactive ⁷Be beam ($t_{1/2} = 53.24$ d) beam and the DRAGON recoil separator were used [3]. The experimental details and preliminary results for the resonance strengths will be discussed.

^[1] C. Fröhlich *et al.*, Phys. Rv. Lett. **96**, 142502 (2006).

^[2] S. Wanajo, H.–T. Janka and S. Kubono, ApJ **729**, 46 (2011).

^[3] D. A. Hutcheon *et al.*, Nucl. Instrum. Methods Phys. Res A, **498**, 190 (2003).