On the ¹²C hoyle state gamma decay

G. Cardella,¹ F. Favela,¹ N.S. Martorana,^{2,3,4} L. Acosta,^{5,1} L. Auditore,^{6,1}
A. Camaiani,⁷ E. De Filippo,¹ S. De Luca,^{6,1} N. Gelli,⁷ B. Gnoffo,^{1,3} D.J.
Marin-Lambarri,⁵ G. Lanzalone,^{2,8} C. Maiolino,² A. Nannini,⁷ A. Pagano,¹
E.V. Pagano,² M. Papa,¹ S. Pirrone,¹ G. Politi,^{3,1} E. Pollacco,⁹ L.

Quattrocchi,^{1,6} F. Rizzo,^{3,2} P. Russotto,² A. Trifiró,^{6,1} and M. Trimarchi^{6,1}

¹INFN- Sezione di Catania, Italy

 $^{2}INFN-LNS, Italy$

³Dipartimento di Fisica e Astronomia, Universitá di Catania, Italy ⁴CSFNSM Catania, Italy

⁵Instituto de Fsica, Universidad Nacional Autónoma de México

⁶Dipartimento di Scienze MIFT, Universitá di Messina, Italy

⁷INFN sezione di Firenze and Dip. di Fisica Universitá di Firenze, Italy

⁸Facoltá di Ingegneria e Architettura, Universitá Kore, Italy ⁹CEA IRFU Saclay, Gif sur Yvette, France

The γ -decays of ¹²C excited levels (the Hoyle state at 7.6 MeV and in some cases the 9.64 MeV) are very important for its production in universe. We present here a new attempt to precisely measure such gamma decay probabilities. The one of the Hoyle state is known to be of the order of 4×10^{-4} [1], while for the one of the 9.64 MeV 3⁻ only a lower limit decay probability is known, of the order of 10^{-7} [2]. The measurement was performed at INFN-LNS in Catania using the 4π CHIMERA multidetector [3]. In order to measure such low probability decay-channels we performed a 4-fold coincidence measurement. The target ${}^{12}C$ nucleus was excited by using a beam of 64 MeV α -particles produced by the superconducting cyclotron (CS) of INFN-LNS. The scattered α -particles, and the recoiling ¹²C were detected and identified by E-E and ToF methods [3] performed by two stages Si-CsI(Tl) CHIMERA telescopes and the Timing of the Pulsed CS. The emitted γ -rays were detected and identified by using the second stage of the telescopes, CsI(Tl) scintillators, using fast-slow techniques [4]. Kinematical rules and energy momentum conservation laws were used to constraint the data analysis. In the experiment also the 3- α decay of highly excited nuclei was measured. The contemporary measurement of all decay channels is useful to reduce the systematic errors. Preliminary results of the data analysis will be shown.

^[1] R.G. Markham et al., Nucl. Phys. A 270, 489 (1976).

^[2] D. Chamberlin et al., Phys. Rev. C10, 909 (1974).

^[3] A. Pagano et al., Nucl. Phys. A734, 504 (2004).

^[4] G. Cardella et al., NIM **A799**, 64 (2015).