Neutron Capture Cross Section of ¹⁰Be

Meiko Volknandt,¹ Klaus Eberhardt,² Anne Endres,¹ Philipp Erbacher,¹

Matthias Fix,¹ Kathrin Göbel,¹ Tanja Heftrich,¹ Stefan Heinitz,³ Enno

Hrivula,¹ Arnd Junghans,⁴ Franz Käppeler,⁵ Christoph Langer,¹ Alberto

Mengoni,⁶ René Reifarth,¹ Stefan Schmidt,¹ Dorothea Schumann,³ Benedikt

Thomas,¹ Daniel Veltum,¹ Mario Weigand,¹ Norbert Wiehl,² and Clemens Wolf¹

¹Goethe University Frankfurt, Germany ²University of Mainz, Germany ³Paul-Scherer-Insitut Villingen, Switzerland ⁴Helmholtz-Zentrum Dresden-Rossendorf, Germany ⁵KIT, Germany ⁶CERN, Switzerland

The pattern of the solar abundances of nuclides features a conspicuous minimum in the region of the light elements Li, Be, and B. The main origin of these scarce elements are thought to be spallations of C, N and O in the interstellar and circumstellar matter by cosmic gamma rays. It is referred to as interstellar nucleosynthesis. However, it is essential for the understanding of how the big bang nucleosynthesis and nuclear reactions in stars contributed to the observed abundances, to determine the involved capture reaction cross sections in this mass area. One of those, which has not been measured so far, is the ${}^{10}\text{Be}(n,\gamma)$ cross section.

The ¹⁰BeO sample with 6.6 10^{19} ¹⁰Be atoms has been produced at PSI. The sample was irradiated in a cyclic activation at the TRIGA reactor in Mainz. The characteristic γ -rays following the decay of ¹¹Be were measured using LaBr₃ scintillation detectors. The measurements were performed with and without cadmium wrapping to disentangle the thermal and epithermal components of the neutron flux.

An experiment to determine this cross section in the keV-regime is planned for this year at the Van de Graaff accelerator at the Goethe University Frankfurt. The ⁷Li(p,n) reaction at 1912 keV provides a neutron spectrum corresponding to a stellar environment with kT = 25 keV.