Forbidden ${}^{20}\text{Ne} \rightarrow {}^{20}\text{F}$ electron capture in intermediate-mass stars

Dag F. Strömberg,^{1,2} Gabriel Martínez-Pinedo,^{1,2} Samuel Jones,^{3,4} Oliver S. Kirsebom,⁵ and Frédéric Nowacki⁶

¹Institut für Kernphysik, TU Darmstadt, Germany
²GSI Helmholtzzentrum für Schwerionenforschung, Germany
³Heidelberger Institut für Theoretische Studien, Germany
⁴X Computational Physics Division, LANL, USA

⁵Department of Physics and Astronomy, Aarhus University, Denmark ⁶Université de Strasbourg, CNRS, IPHC UMR 7178, France

The range 7 to 11 solar masses bridge the gap between massive stars (which explode as core-collapse supernovae) and light stars (which end as CO white dwarfs). These intermediate-mass stars form degenerate ONe cores following carbon burning. In some cases the cores grow dense enough to trigger electron capture on various nuclei. Most notably, the double electron capture ${}^{20}\text{Ne} \rightarrow {}^{20}\text{F} \rightarrow {}^{20}\text{O}$ releases enough heat to trigger runaway oxygen burning.

We show that the electron capture on 20 Ne is triggered by the second-forbidden non-unique transition between the ground states of 20 Ne and 20 F. This transition has recently been measured and found to have a significant strength. Stellar models that take this measurement into account ignite oxygen off-centre and at lower densities compared with those without the forbidden transition. This increases the likelihood of a thermonuclear explosion with an ONeFe remnant as opposed to a collapse to a neutron star.

This work is supported by the Deutsche Forschungsgemeinschaft through the contract SFB 1245 and the EU COST Action CA16117.