Stellar 78,80,84,86 Kr (n, γ) Reactions Studied by Activation at SARAF-LiLiT, Atom Trap Trace Analysis and Decay Counting

Moshe Tessler,¹ Michael Paul,² Daniel Baggenstos,³ Shlomi Halfon,⁴ Tanja Heftrich,⁵ Wei Jiang,⁶ Arik Kreisel,⁴ Zheng-tian Lu,⁶ Peter Mueller,⁷ Roland Purtschert,³ Rene Reifarth,⁵ Asher Shor,⁴ Daniel Veltum,⁵ Mario Weigand,⁵ Leonid Weissman,⁴ and Jake Zappala⁷

¹Soreq Nuclear Research Center, Yavne, Israel 81800
²Hebrew University, Jerusalem, Israel 91904
³University of Bern, 3012 Bern, Switzerland

⁴Soreq Nuclear Research Center, Yavne 81800, Israel

 5Goethe University Frankfurt, Frankfurt 60438, Germany

⁶University of Science and Technology of China, Hefei, Anhui 230026, China ⁷Argonne National Laboratory, Argonne, Illinois 60439, USA

(Dated: June 16, 2019)

We report on (n, γ) neutron capture experiments performed with the Liquid-Lithium Target (LiLiT) and the mA-proton beam at 1.92 MeV (2-3 kW) from the Soreq Applied Research Accelerator Facility (SARAF) [1]. The setup yields highintensity 30-keV quasi-Maxwellian neutrons $(3-5\times10^{10} \text{ n/s})$ closely reproducing the conditions of s-process stellar nucleosynthesis. The ^{78,80,84,86}Kr (n, γ) reactions at the border between weak- and strong-s process were studied. A Ti sphere filled with 100 mg of natural Kr gas was placed in an irradiation chamber downstream of LiLiT with a gold foil used as a neutron fluence monitor during the activation. The activities of the short-lived Kr isotopes (^{79,85m,87}Kr) were measured by γ decay counting with a HPGe detector. The long-lived Kr isotopes (^{81,85g}Kr) were measured by atom counting via Atom Trap Trace Analysis (ATTA) at Argonne and Low-Level Counting (LLC) at Bern. Preliminary results and their significance will be presented.

[1] M. Paul et. al, Eur. Phys. J. A 55, 44 (2019)