Nuclear Physics Research at GSI/FAIR: Precision experiments with stored and cooled exotic nuclei

Meeting of the Nuclear Physics Division Board of the EPS 30 September - 01 October 2019, GSI and University of Frankfurt, Germany

FI MHOLTZ

GSI and FAIR Facilities

Intensity gain: x 100 – 1000 10 x energy (comp. to GSI) Antimatter: antiproton beams **Precision:** System of storage and cooler rings Ring accelerator Ring accelerator SIS18 SIS100 Linear accelerator UNILAC Production of new EŚR exotic nuclei Antiproton ring HESR Production of antiprotons CRYRING 100 meters Existing facility Planned facility Experiments Collector ring CR

•

•

Experimental Facilities available for FAIR Phase-0

Physics at Storage Rings

Storage rings stay for: Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power

Why storage rings?

- Storage efficient use of rare species
- Cooling high quality beams
- Recirculation high luminocities though thin targets
- Removing of contaminants
- Ultra-high vacuum preserving atomic charge state
- Laser-ion interaction
- Various gaseous internal targets, electrons, (neutrons)
- High detection efficiencies for recoils

Storage ring facilities at 🖪 🚍 👖

Experimental Storage Ring (ESR)

In operation since 1990 Circumference = 108.3 m Vacuum = 10^{-10} — 10^{-12} mbar Electron, stochastic cooling Energy range = 4 – 400 MeV/u Slow and fast extraction

CRYRING (transported from Stockholm University)

Planned start of operation (stable ions) – 2016 Planned start of operation (exotic nuclei) – 2020 Circumference = 54.15 m Vacuum = 10^{-11} — 10^{-12} mbar Electron cooling Energy range = ~0.1 - 15 MeV/u Slow and fast extraction

Physics with Storage Rings

Nuclear Physics

Nuclear structure through transfer reactions Long-lived isomeric states Atomic effects on nuclear half-lives Half-life measurements of ⁷Be Nuclear effects on atomic decay rates Exotic decay modes (NEEC/NEET, unbound states, ...) Di-electronic recombination on exotic nuclei Purification of secondary beams from contaminants Nuclear magnetic moments Neutron-induced reactions Capture reactions for p-process

Atomic Physics

.

Precision x-ray spectroscopy Super-Critical fields Electron-Ion collisions Atomic lifetimes Nuclear effects on atomic decay rates Photoionization Di-electronic recombination on exotic nuclei Electron spectroscopy / electron scattering Atom/Molecule fragmentation Ion-molecule interactions Laser induced recombination

HELMHOLTZ

PROPOSALS SUBMITTED TO G-PAC IN 2017

E131	CRYRING	Α	Z>54, Be-like	Slowing down, E-cooling, Vacuum	27
E138	CRYRING	Α	U91+	Slowing down, E-cooling	39
E121	ESR	Α	206Pb->205Tl81+	FRS, Stacking, E-cooling, Gas-Jet	
E122	ESR	В	208Pb->fragments	FRS, S-cooling, E-cooling	
E123	ESR	В	238U	E-cooling, Drift-tubes	
E124	ESR	В	238U89+, 91+	E-cooling, Gas-Jet, E-spectrometer	
E125	ESR	A-	238U89+, 91+	Slowing down, E-cooling, Gas-Jet	48
E126	ESR	В	238U88+	Slowing down, E-cooling, Gas-Jet	
E127	ESR	Α	Z~50	Slowing down, E-cooling, Gas-Jet, Vacuum	15
E128	ESR	Α	209Bi82+, 80+	(Stacking), E-cooling, Lasers, Drift tubes	10
E130	HITRAP	Α	209Bi82+, 80+	Slowing down, (Stacking), E-cooling	10
E132	ESR	Α	132Xe	Slowing down, E-cooling, Gas-Jet	48
E133	ESR	В	Z>54	E-cooling, Gas-Jet	
E136	ESR	В	12C3+	E-cooling, Lasers	
E135	ESR	A-	84Kr32+	E-cooling, Lasers	21
E137	ESR-C. A	Α	238U89+	E-cooling, Extraction to Cave-A	18
S461	CRYRING	A-	40Ar->30P15+	FRS, Slowing down, E-cooling	21
				TOTAL	278

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

Proposal for an experiment to be conducted at FRS/ESR **Measurement of the bound-state beta decay of bare** ²⁰⁵Tl ions Updated from previously accepted proposal E100

For the LOREX, NucCAR, SPARC and ILIMA Collaborations

Regarding the proposal "Measurement of the bound-state beta decay of bare ²⁰⁵Tl ions" (Proposal E121), the G-PAC recommends this proposal with **highest priority** (A) and that **21 shifts of main beam time** be allocated for this measurement.

HELMHOL

Bound-State β-decay

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

HELMHOLTZ 🖬 🖬 🏛

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

Solar Neutrino Flux

Proton Capture Reaction Measurements

Regarding the proposal "Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process" (Proposal E127), the G-PAC recommends this proposal with **highest priority (A)** and that **15 shifts of main beam time** be allocated for this measurement.

Nuclear reaction studies in a storage ring

High revolution frequency

→ high luminosity even with thin targets
Detection of ions via in-ring particle detectors
→ low background, high efficiency
Well-known charge-exchange rates
→ in-situ luminosity monitor
Ultra-thin windowless gas targets
→ excellent resolution
Applicable to radioactive nuclei

HELMHOLTZ 💶

Normalization of Nuclear Cross Sections

Courtesy Jan Glorius

¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR

HELMHOLTZ II II II

¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR

HELMHOLTZ II II II

¹²⁴Xe(p, γ) - Results

The CRYRING facility

Courtesy Jan Glorius

erc

ASTRUm

E131: Precision collision spectroscopy of Be-like ions at the electron cooler

Technical requirements:

SPONSORED BY THE

q<20

Federal Ministry of Education and Research

Be-like ions from ESR with $Z \ge 54$ and I = 0 (e.g. ¹³²Xe⁵⁴⁺, ¹⁴²Nd⁵⁶⁺, ²⁰⁸Pb⁷⁸⁺, ²³⁸U⁸⁸⁺).

- Highest possible energy in CRYRING to minimize • electron capture from residual gas.
- Number of stored ions in CRYRING > 10^4 . •
- Ion-beam diagnostics (current transformer, beam ٠ profile monitor, Schottky analysis).
- Cold electron beam (expansion factor 100). ٠
- Control of electron and ion beam positions in order to be able to achieve coaxial beams of electrons and ions in the electron cooler.
- Flexible programming control of high-voltage amplifier at electron cooler.
- Movable single-particle detector with 100% detection efficiency at position "30<q".
- Hardware timing signals for data acquisition such as • "injection", "start of voltage ramp", and "new voltage".

E138: 1s Lamb Shift in U⁹¹⁺

ILIMA in Collector Ring

Isochronous Mass Spectrometry

- Time of Flight Detectors
- Ultra-sensitive non-destructive Schottky detectors

ILIMA: Masses and Lifetimes

FAIR Phase-1: SPARC@HESR

2 TDRs approved in 2016

- species: p, pbar, HCI, RIB
- circumference 574 m
- injection energy 740 MeV/u
- B_p = 50 Tm
- for U⁹²⁺: 4.937 GeV/u
- γ_{MAX}=6.30; β_{MAX}=0.987
- momentum (energy) range
 1.5 to 15 GeV/c (0.8-14.1 GeV)
- stochastic cooling / e-cooling

HESR Parameters

- Storage ring for internal target
- Initially also used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹

Mode	High luminosity (HL)	High resolution (HR)
Δp/p	~104	~4x10 ⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p	1011	1010

- Stochastic & electron cooling
- Resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise m and Γ

NUPECC Report

The combination of PANDA's discovery potential for new states, coupled with the ability to perform high-precision systematic measurements is not realised at any other facility or experiment in the world.

Thank you for your attention!

